a2 United States Patent

Osuna

US009364762B2

US 9,364,762 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(1)

(52)

PHYSICAL AND ENVIRONMENTAL
SIMULATION USING CAUSALITY MATRIX

Applicant: Angel Gaming, LL.C, Phoenix, AZ (US)

Inventor: Alex Osuna, Phoenix, AZ (US)

Assignee: ANGEL GAMING, LLC, Phoenix, AZ
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 104 days.

Appl. No.: 13/830,444

Filed: Mar. 14,2013
Prior Publication Data
US 2014/0267230 Al Sep. 18, 2014
Int. CI.
AG63F 13/825 (2014.01)
A63F 13/822 (2014.01)
AG63F 13/58 (2014.01)
A63F 13/56 (2014.01)
AG63F 13/55 (2014.01)
U.S. CL
CPC ..o AG63F 13/822 (2014.09); A63F 13/55

(2014.09); A63F 13/56 (2014.09); A63F 13/58
(2014.09); A63F 2300/8082 (2013.01)

Overworld

MapNodes
e NPC(s) pointer
e Item(s) pointer
e Map Set pointer

Master Database

Static Parameters

Variablc Paramctcrs

NPC List

Sct List

Other Object Lists

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0198501 Al* 82010 Otanietal. 701/201

* cited by examiner

Primary Examiner — Said Broome
(74) Attorney, Agent, or Firm — Quarles & Brady LLP

(57) ABSTRACT

A simulation engine for causing a local or distributed com-
puting system to produce a simulation of a virtual world
includes one or more program modules that improve the
realism and memory management of the simulation. An over-
world object includes data pertaining to a world map and data
pertaining to parameters for instantiating one or more NPCs
within the virtual world. The world map may include map
nodes that track the NPCs thereon, and also retain terrain data
in a map set. The map set may be a single array of characters,
each character referencing a terrain configuration that may be
stored on the local computing system. An NPC object may
include a hierarchy of needs that governs the behavior of the
NPC. The needs may be basic needs such as eating and
sleeping, and may have increasing complexity, requiring the
completion of tasks and subtasks to fulfill the need.

18 Claims, 3 Drawing Sheets

NPC

NPC pointer
MapNode pointer
Genetic Code
Pcrsonal Information

Neceds

Tasks
e subtasks

Body Parts

Tissues
e material

Inventory
e items
* wcapons

Item Weapon Building

US 9,364,762 B2

Sheet 1 of 3

Jun. 14, 2016

U.S. Patent

I 'Ol

Juipying

uodeap,

wo

suodeom e
SWoN e
AI0oU0AU]

[ELIOJEW o
SONSSL,

sued Apog

Syseqns e
Syse],

SPOON

UOIJRWLIOJU] [RUOSIO]
opo)) J1AUAN)
1omrod opoNdeN
Jowrod DN

JdN

SIS 399[qQ) 1Y10

R0 REN

I DN

s1o)oweIed J[qBLIBA

sIojoweIRd O1)RIS

oseqere 10ISeIN

owrod oG depy o
Jomrod (S)wd)] e
omrod (S)DAN e

sopoNdeN

PIOMISAQ

US 9,364,762 B2

Sheet 2 of 3

Jun. 14, 2016

U.S. Patent

¢ 9lId

SAJND 3BIS SWTISST] dsus4dd - 11
9AUN) 31B3S BWTIDSFTT Yadusdis - et
(9 swosowodyd> 03 3JUBJSFIJ UT paseq) JITFIpow 9ZTS TEUOTIITIPPE - 6
9dAy wJe/33T juoul - g
adAy 3o1 >oeq - £
2dAy Apoq °seq - 9
SJ93uny pue SJ33SaU TeEUNWWOd - Z
SJ3153U Teuhuwwod - M
sJdo3uny Teunuwwod> - /N

Teunuwo> ATpTTW - D
Terdos ATpTIw - 3
JOTABYDQ 4TOM 3UOT - D
TETJ03TJJDY JBdAY - ¥
(v swosowody> Aq po1394)E puE SIJ9443) JITFTpPoW UOTSSaJ38e Teunwwod - g
(5 swosowodyd> Aq po3dd}jte pue S3O9}449) UOTSSIJTBe dATITUBOD-TWdS - ¥
8dAy 31T+ - €
9dAy BunT - ¢
SJOATUJED DATSSDJTTe JadAy - 7z
DJOATUJED IATSSDJF8e ATpTIW - M
IJOATUWO DATSS2438e uadAy - |
9JOATUWO 3ATSSs2J38e ATpTIw - N
9JOATUWO DTIST4TOed - D
9JOATIQJdY poduddadidJd osodnid - 3
SJOATIQJaY pdduUsJdtdJd JoaqI4 -)
9JOATQU3Y IJBUTWTJISTPUT - ¥V

ddudJaadd poos - T
UOT1EUSTSap UTHS POIETDJ SWOI] - @

*%
ki
%%
*k
%k
%%
*k
%k
%%
*k
%k
%%
*k
%%
*k
%k
%%
*k
%k
%%
*k
%k
%%
*k
%3k
*%
k%

Sedkeskkkkskseskksk ks skokskkskekk
A9 2d2usnboas swoudB .

st sk e ok sk sk sk e e sk ke sl sk e skoske sk sk sk ok

z
1
N
P]
3
J

v

%%
*k
%k
%%
*k
%k
*%

ksl sk ko sk sk sk ok sk ko sk oskeskeskok

S95eqoaTINU

%3k

dokkskakkkkokskskkkkokskskkkkk

US 9,364,762 B2

Sheet 3 of 3

Jun. 14, 2016

U.S. Patent

v 'Old

€ 9Old

urys :[glonssty,
ojosnu :[z]onssiL
auoq :[[]enssiy,

s :[oJonsstL

(897 1om0T) 1ed Apog

urys :[lonssiy,
oJostw :[¢lonssi],
ouoq :[zlonssiL
arosnw [[Jenssty,
urys :[pJonssiy,

(o1 ddn) 17ed Apog

US 9,364,762 B2

1
PHYSICAL AND ENVIRONMENTAL
SIMULATION USING CAUSALITY MATRIX

FIELD OF INVENTION

This invention relates to methods of simulating a virtual
world. This invention particularly relates to methods of
implementing a causality matrix to manage interactions
among populations in a memory-efficient simulated environ-
ment.

BACKGROUND

Realistic simulation of a virtual world and its population
has long been an interesting engagement for computer pro-
grammers. Such simulations have wide application in aca-
demic fields such as math and statistics, anthropology, soci-
ology, and digital humanities. Certain embodiments have
found significant commercial or critical success in the video
game industry; examples include Sid Maier’s Civilization
games and Maxis’ SimCity and The Sims games. Of particu-
lar interest with respect to the present invention is the simu-
lation game Slaves to Armok: God of Blood Chapter IT: Dwarf
Fortress (“Dwarf Fortress™). The intrigue of Dwarf Fortress is
in its combination of procedurally-generated world terrain,
semi-autonomous entity activity, and adept memory manage-
ment to allow for complex simulations. These features pro-
vide a realistic virtual world populated by organic beings that
appear to have unique personalities.

Environmental simulations continue to increase in com-
plexity in order to more closely approximate a real-world
environment. Unfortunately, simulations are both intrinsi-
cally limited by their own programming and externally lim-
ited by the available resources of the computer system execut-
ing the simulation. Intrinsic limitations arise where entity
actions and interactions are hard-coded, because only a finite
number of actions and results can be pre-programmed into the
simulation. Because not every possible real-world situation
may be represented with source code, a non-realistic repeti-
tiveness of actions and results arises. External limitations
arise when the simulation attempts to store and retrieve too
much data from the memory storage locations of the comput-
ing system. A large population of simulated entities, or a large
amount of complex simulation terrain, may tax the system too
much, resulting in either poor performance or sacrifice of
realism.

It is an object of this invention to provide a method of
simulating a virtual world that makes entity interactions more
organic. It is a further object of the invention to instill a
hierarchy of needs in the entity. It is a further object to simu-
late entity interactions based on the desire to fulfill the entity’s
needs. Itis another object to provide a simulated environment
for the entity that properly manages the memory of the com-
puter on which the simulation is running.

SUMMARY OF THE INVENTION

A method of generating a virtual world is provided,
wherein an organic entity is simulated with a high degree of
realism, in particular relating to the entity’s interactions with
its environment and other simulated entities. Rather than
having predetermined courses and outcomes, the contribu-
tions of each entity to an interaction are managed by a cau-
sality matrix that may be unique to the entity. The causality
matrix includes one or more needs arranged into a hierarchy,
such that the entity’s behavior is driven to satisfy parameters
of'the highest-priority unmet need. The needs in the hierarchy

10

20

30

40

45

55

2

may comprise commonly-understood “human” needs,
including food, water, sleep, and other physiological needs,
shelter and security, companionship, knowledge, and
achievement. The parameters of a need may be tasks that must
be completed, in either a specific or random order, to fulfill the
need. A task may further comprise a set of subtasks to also be
completed. The causality matrix may further comprise a set of
skills in which the entity may acquire proficiency. The
acquired skills may affect the speed or quality in which the
entity completes tasks or fulfills needs, and may also affect
interactions with the environment or other entities. The cau-
sality matrix may further comprise a “store of knowledge,”
which is a set of observable facts about the virtual world that
the entity has learned either directly or through other entities.
Facts added to the store of knowledge may allow the entity to
perform new skills or tasks or improve performance of known
skills or tasks. The entity’s capabilities may be limited or
enhanced by biological characteristics, such as muscle mass,
agility, and health, or by possession of useful or hindering
items.

Entities are placed in a computer-generated environment
having particular geological and ecological traits. An entity
may fulfill its needs by moditying its surroundings, acquiring
or creating useful items, or engaging other entities that may
have needs that are aligned with or askew from the entity’s
needs. Modifying surroundings may include harvesting
plants, corralling water sources, building structures, digging
into the ground for mining or other purposes, or other tasks
that fulfill a need. Items, such as tools or weapons, may be
acquired, such as by theft or purchase, or fashioned from raw
materials. Engagements with other entities may be friendly or
hostile. Friendly entities may cooperate to fulfill common
needs; as a cooperative group of friendly entities grows, soci-
etal behaviors emerge. Societal structures may vary in com-
plexity according to the needs and capabilities of the involved
entities. The simulation may include combat mechanics to
determine outcomes of hostile encounters.

The complexity of the simulation requires careful real-time
management of the memory of the computer on which the
simulation is being run. In the preferred embodiment, the
virtual world has sufficient complexity to simulate real-world
environments in order to model behavior in populations with
known behavioral motivations. The preferred implementa-
tion is therefore capable of generating up to about one million
square miles of terrain inhabited by up to about one million
entities.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of one embodiment of object classes in
the simulation.

FIG. 2 is a diagram of an example of digital DNA.

FIG. 3 is a diagram of example body part objects in an NPC
object.

FIG. 4 is a diagram of example tissue objects in example
body part objects of FIG. 3.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof have
been shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
description herein of specific embodiments is not intended to
limit the invention to the particular forms disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope ofthe
invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described more specifically with
reference to the following embodiments. It is to be noted that

US 9,364,762 B2

3

the following descriptions of preferred embodiments are pre-
sented herein for purpose of illustration and description only.
It is not intended to be exhaustive or to be limited to the
precise form disclosed.

It is to be understood that the phraseology and terminology
used herein is for the purpose of description and should not be
regarded as limiting. The use of “including,” “comprising,” or
“having” and variations thereof herein is meant to encompass
the items listed thereafter and equivalents thereof as well as
additional items.

The various embodiments of the invention will be
described in connection with systems and methods for simu-
lating a virtual world, including simulating terrain, ecology,
and other environmental components, and large populations
of organic entities, referred to herein as non-player charac-
ters. That is because the features and advantages of the inven-
tion are well suited for this purpose. Still, it should be appre-
ciated that the various aspects of the invention can be applied
to other computer simulation and dynamic modeling environ-
ments.

Implementation

The preferred implementation of the virtual world simula-
tion, generated by a simulation engine, may be objectively
described as follows: an overworld objectkeeps track of game
data, including at least a world map, a master list of non-
player characters (“NPCs”) that populate the world, and a
database of static parameters defining physics in the world;
map nodes for each location on the map keep track of the
NPCs, buildings, and items that are on that node; an NPC
includes alist ofits needs, a list of its body parts, a list of items
it possesses, and a flag indicating whether it is involved in an
interaction and with what; items, weapons, and buildings
contain their properties as described below. FIG. 1 illustrates
one embodiment of an object-oriented layout of the world,
described below. The various objects may be collectively
implemented to create the virtual world simulation. Addition-
ally or alternatively, the objects may be organized into one or
more program modules that may be separately distributed and
implemented to provide functionality pertaining only to those
objects to another simulation engine.

Overworld Object

The overworld object contains sub-objects, static param-
eter values, and certain variable parameter values that pertain
to high-level tracking and management of the world map and
organic and inorganic objects therein. The overworld object
may further contain pointers to some or all of the objects that
are instantiated outside of the overworld object. The imple-
mentation may vary according to the size and complexity of
the world map, the number and complexity of organic and
inorganic objects and materials to be placed in the world, the
parameters of the simulation, and the level of manual-versus-
automatic generation of initial conditions in the simulation.

Preferably, the overworld object stores static and variable
parameters in lists within a master database. Static parameters
are assigned an unchangeable value at instantiation and are
never removed, meaning their influence on the overall simu-
lation remains constant. However, the engine may modify the
effect of the static parameters for particular entities, items,
buildings, or terrain. For example, if a NPC is wearing anti-
gravity boots, the engine may reduce the effect of gravity, a
static parameter, all the way to zero for its force calculations
on that NPC. Static parameters may include, without require-
ment or limitation:

map size: total number of mapnodes described below, as

well as the length, width, and height of each mapnode
and the width and length of the map expressed in number
of mapnodes;

5

15

20

35

40

45

55

65

4

physical properties: properties of the world’s environment,
such as gravity, temperature ranges, day length, season
length, world age, and maximum and minimum values
for parameters such as material properties, character
properties, terrain material content, and worldwide
water level,

terrain types: identifications, such as grassland, swamp,
mountain, volcano, desert, jungle, wall, floor, solid, or
empty; the identification may be associated with static or
variable terrain composition parameters;

terrain composition: organic and inorganic materials, such
as grass, trees, soil, mud, sand, clay, types of rock and
other minerals, and water and other liquids, that may be
present in the terrain; the engine may use a terrain tile’s
identification to determine the materials present in that
terrain tile;

material properties: static properties for different materi-
als, such as raw or refined minerals, refined metals,
terrain materials, woods and other plant materials, liq-
uids, tissues, weapons, and items; the properties may
include weight, density, elasticity, hardness, conductiv-
ity, melting and freezing points, viscosity, surface ten-
sion, toxicity, and other typical physical properties of
materials; the engine may use the material properties in
calculations relating to modifying terrain, setting char-
acteristics of instantiated tissues, weapons, or items, or
determining results of combat or refinement;

entity properties: static properties for a set of NPC species,
such as humans or humanoids, bipedal or quadrupedal
animals, birds or other flying creatures, fish or other
waterborne creatures, amphibians, and paranormal crea-
tures such as ghosts; the properties may include standard
body part arrangement, statistical values and hard-coded
rates of change for physical and mental traits such as
weight, height, muscle density, and intelligence; the
engine may use the entity types and their properties in
calculations relating to modifying terrain, setting char-
acteristics of instantiated tissues, weapons, or items, or
determining results of combat or refinement, as well as
in determining the simulated characteristics of specific
NPCs as they are affected by the NPC’s genetic code,
described below;

observable sciences: a static list of scientific fields of which
individual NPCs or NPC groups may gain awareness as
described below with reference to “knowledge progres-
sion;” sciences may include, without limitation, primary
fields such as agriculture, physics, physiology, and
chemistry, and the fields of science may include sub-
fields, including nested subfields—for example, physics
may have subfields including nuclear physics, ballistics,
fusion, and electronics—which may belong to a plural-
ity of primary fields; for example, thermodynamics and
combustion may be subfields of both physics and chem-
istry; sciences may further include a list of interactions
that increase the awareness level of one or more NPCs
involved in the interaction, and the degree to which the
awareness level should be increased; sciences may indi-
cate that, when a proscribed level of awareness is
reached, an NPC may obtain additional capacities,
including without limitation: performance of new sci-
ence-based interactions, such as making or using certain
items or weapons; increased efficiency in performing
interactions or fulfilling needs; and awareness of new
sciences.

The static parameter list may further include a set of “digi-

tal DNA” parameters. Each NPC may have a genetic code,
similar to real-world organic DNA, that determines certain

US 9,364,762 B2

5

physical and behavioral characteristics. The genetic code is
determined at instantiation of the NPC as described below,
and is selected from the digital DNA parameters. Preferably,
the digital DNA parameters include a list of characters rep-
resenting available nucleobases, and a genome sequence key.
The genome sequence key is a numbered list of personal
genetic attributes, the number of each trait corresponding to
its position in the code. So, if the genome sequence key
includes 30 trait entries, the NPC genetic code will be 30
characters long, each character being a nucleobase. Within
the digital DNA parameters, each nucleobase is associated
with a particular trait within each attribute. For example, if
position 1 in the genetic code is associated with eye color, and
the nucleobases are A, C, E, and G, the digital DNA param-
eters associate A with blue eyes, C with brown eyes, E with
green eyes, and G with hazel eyes. An example of digital
DNA parameters with a nucleobase list and a partial genome
sequence key is illustrated in FIG. 2. The genetic code may
further include positions that do not contain nucleobases, and
instead contain references to other static parameters such as
material properties or entity properties. The genome
sequence key may include trait entries for these positions in
the genetic code.

The genetic attributes may pertain to physical features,
mental capacities, and behavioral predispositions. In one
embodiment, five of the genetic attributes may pertain to the
commonly recognized “big five” personality traits: openness,
conscientiousness, extraversion, agreeableness, and neuroti-
cism. The genetic code may provide for hereditary passing of
physical, mental, and behavioral dispositions, evolution, and
mutations. Heredity passing may comprise copying a portion
of'an NPC’s genetic code when instantiating a “child” of the
NPC. The genetic codes of two “parent” NPCs may be selec-
tively combined in the child. The value of one or more genetic
attributes may be selectively altered to represent a genetic
improvement, thus effecting evolution of the species. Or, the
value may be randomized, representing a mutation.

Variable parameters stored by the overworld object are also
assigned a value at instantiation; however, that value may be
zero or null if the parameter does not affect the initial condi-
tions in the simulation. Variable parameter values may change
as simulation time progresses, the parameters’ effects chang-
ing with the values and possibly becoming ineffectual if the
value drops to zero or null. Variable parameters may include,
without limitation:

map properties: number of each map set type (described

below), number of tiles of each terrain type, and number
of inhabited tiles;

worldwide or regional properties: world time, overall

population, regional population, population by entity
type, temperature and weather matrices, total amount of
each terrain material, localized water and pollution lev-
els, world knowledge level, knowledge level by entity
type, number of settlements, number of instances of
each type of building, and number of instances of each
type of weapon and item.

The master database may further include lists that keep
track of particular in-world objects. In one embodiment, such
an object list includes references to the listed objects, such as
file names, library references, or pointers to the location in
memory where the object is stored. Object lists may be static
or variable depending on the type of objects they track: One
object list, referred to as the “set list,” may comprise a list of
set characters and the memory location of the set each set
character represents. Another object list, referred to as the
“NPC list,” may comprise a reference pointer to the NPC
object for every NPC currently being simulated. Entries in the

10

15

20

25

30

35

40

45

50

55

60

65

6
NPC list are added when the NPC is “born” into the simula-
tion, and may be removed when the NPC dies or otherwise
leaves the simulation. Alternatively the NPC list or another
list may keep track of all deceased NPCs and may further
change the NPC entity type to a ghost or other paranormal
entity type.

Map Node Subobject

The overworld object further includes a map node subob-
ject for each sector of the world. A map node subobject
contains a map set, which is an array representing the terrain
configuration at the map node’s position on the world map, as
described below. Related to the map set, the map node sub-
object may contain a composition array that describes the
material and item content of the terrain at sequential heights
in the map node. In one embodiment, for each character in the
map set, the composition array includes the organic and inor-
ganic material types present, and at what percentages. The
engine may use the particular composition to determine
actions and reactions that may take place at that point on the
map. For example, the soil and rock composition may deter-
mine whether or not plants can grow and how long it takes for
an NPC to dig through the terrain. The composition array may
further include items that can be retrieved by NPCs. For
example, the composition array may contain a quantity of
units of a retrievable ore and an initial height of the ore. The
engine uses this data to create item objects, described below,
for each unit of ore at varying heights in the map based on the
initial height.

The map node subobject may further contain references to
any NPC object, building object, or item object that is present
on the map node. In the preferred embodiment, the engine
uses the NPC references within the map node subobject,
rather than the NPC list in the overworld object, to simulate
actions of the NPCs. This allows the simulation to be parti-
tioned by map node. That is, where the world is iteratively
simulated, some map nodes may be selectively processed at
each iteration while others “sleep.” A sleeping map node may
be entirely skipped for simulation purposes, its properties and
the properties of the NPCs and items thereon, if any, remain-
ing static. Preferably, the engine, using the NPC references
within the map node subobject, determines whether the map
node contains any NPCs and only puts the map node to sleep
if it contains no NPCs. This allows the engine to simulate the
“important” map nodes—those containing NPCs—much
faster by partially or completely skipping sleeping map
nodes. However, even if no NPCs are present, the sleeping
map node may contain items that should change over time
without being manipulated, such as plants that grow and
propagate. In this situation, the engine may include a process-
ing routine that periodically awakens sleeping map nodes to
update the status of items therein, then puts those map nodes
back to sleep. A sleeping map node is also awakened when an
NPC moves into it. In an alternative embodiment, the engine
may put map nodes to sleep even if NPCs are located thereon.
This embodiment may work in conjunction with NPC priori-
tization, described below, wherein the engine is only required
to simulate NPCs having at least a threshold priority. A map
node that contains NPCs may thus be put to sleep if none of
the contained NPCs meet the threshold priority. The proper-
ties of sleeping NPCs may be held static or periodically
updated as described above. Each map node subobject is
associated with a position in the map set array described
below.

Map Set

The terrain of the virtual world is represented by reference
to the map sets contained in the two-dimensional array of map
node subobjects. Specifically, the overworld object may con-

US 9,364,762 B2

7

tain a map_node_array[nl][n2] parameter, where nl is the
longitudinal position of the map node and n2 is the latitudinal
position of the map node. The map node’s map set determines
the terrain configuration at that position on the map. Each
map set represents a sector of terrain, the sector having pre-
determined dimensions. A map set is a string or an array of
characters that the engine stacks vertically to represent the
terrain at that map node. The number of characters corre-
sponds to the height of the world map; that is, the first char-
acter in the array is the lowest point in the map, and the last
character is the highest point. In this manner, world height or
depth may be increased by simply adding characters to the
array.

Each character in the map set represents a known volume of
terrain. Preferably, each character represents one cubic mile
of the simulated world. Each character may be associated
with a stored terrain configuration. The terrain configurations
may be stored in a database. In one embodiment, each terrain
configuration may be a three-dimensional computer-gener-
ated graphic model, which may include one or more polygo-
nal terrain meshes onto which one or more terrain textures are
mapped, and may further include a height map and other data
that describes the shape and composition of the represented
terrain. In another embodiment, the terrain configuration may
be a block configuration of a known number of blocks of
uniform size. The block size translates to a specific height,
width, and length in the simulated world. The block configu-
ration may contain any number of blocks. In one example, the
character represents one cubic mile of the world that contains
a configuration of 18,000 blocks arranged 30 wide by 30 long
by 20 high. Each block in this example represents an area 176
feet wide, 176 feet long, and 264 feet high. The three-dimen-
sional arrangement of blocks, particularly whether a block is
a terrain tile or is empty, may be represented by a three-
dimensional binary matrix with zeroes representing empty
blocks and ones representing terrain tiles. In another
example, the block configuration contains a single block.
Each block in the block configuration represents one terrain
tile and contains an identifier for the terrain type of the rep-
resented terrain tile. The terrain types are stored in the master
database as described above. Each terrain tile is either a type
of terrain or is empty, representing that there is no solid
ground in that space.

Each character in the map set may be a typical ASCII
character that consumes one byte of memory storage. In a
typical computer architecture where a byte consists of 8 bits,
each byte-sized character may have a value of between zero
and 255. This framework allows for representation of up to
256 discrete block configurations. Other frameworks may be
used. For example, if each element’s memory usage is
increased to two bytes, or a single byte is designated to consist
of 16 bits, the simulation may represent over 65 thousand
different block configurations. In the preferred embodiment,
the block configurations are stored in persistent memory, such
as on a hard drive, of either the simulating computer or on a
client computer that is accessing the engine’s simulation, in
advance of beginning the simulation. This way, the engine
may quickly determine the proper block configuration to
insert into the world while it is accessing the associated map
node. Specifically, the engine simply reads each character in
the map set to determine the needed block configuration and
retrieves it. The engine therefore is not required to store every
block or, alternatively, every segment of terrain in the physi-
cal or virtual memory of the computer on which the engine is
running. This simulation method is advantageous in distrib-
uted computing environments, such as a massively multi-
player online video game in which a server may simulate a

10

15

20

25

30

35

40

45

50

55

60

65

8

game world containing hundreds or thousands of map nodes
along with thousands of NPCs and instantiated player char-
acters, the player characters being controlled from client
computers that are remote from the server. The engine may
simply retain in memory the character of the map set when
processing a map node, rather than the entire geographical
layout of the map node. The detailed map sets are stored on
the client computers and rendered to the client computers’
displays without consuming server memory resources.

Through sequential or parallel processing of adjacent map
sets, the engine develops a height map for the simulated area,
including underground structures such as caves, which are
empty terrain tiles beneath terrain-filled ones. Each map set
may be randomly or procedurally generated, or it may be
hard-coded and stored in one or more files on the computer. In
an embodiment where the map sets are hard-coded, each map
node subobject may contain an identifier for the map set to be
placed on that map node. The identifier may be a single
character, allowing for up to 256 discrete map sets to be used
by the engine. The map set may be rendered in three dimen-
sions using a graphics rendering module, which may be a part
of'the engine or a separate computer program.

Terrain Modification

The simulation may provide for the terrain represented by
the map sets to be modified, such as by weather, seismic
activity, NPC interactions with the terrain, or player interac-
tions with the terrain. The engine may modify the map set by
determining which terrain configuration within the map set is
to be modified. The engine further determines the modifica-
tion to be made. The engine then identifies a replacement
terrain configuration that will most accurately reflect the
desired modification to the existing terrain. In one embodi-
ment, the engine may search the database of stored terrain
configurations for a replacement terrain configuration that
approximates a combination of the existing terrain configu-
ration with the modification to be made. For example, to
simulate the impact of'a 160 feet diameter meteor on a square
mile of substantially flat ground, the engine searches the
database for a terrain configuration having substantially flat
ground surrounding a crater of about 4000 feet in diameter
and 170 feet in depth, and selects the closest match as the
replacement terrain configuration. The engine may replace
the character of the existing terrain configuration in the map
set with the character of the replacement terrain configura-
tion. Upon the next iteration of the simulation, the terrain in
the map set will be correspondingly altered.

In another embodiment, the terrain configurations may be
classified according to a classification scheme that groups
terrain configurations according to dominant features therein.
For example, ground-level terrain configurations may be clas-
sified per their terrain features, such as flat, concave, hilly, or
mountainous, The terrain configurations may further be clas-
sified per their environmental features, such as their biome,
which may be forest, desert, jungle, plains, swamp, and the
like. The terrain configurations may be further classified per
their one or more modified features, such as fissured, cratered,
flooded, excavated, or unmodified. The engine may then
search for the proper replacement terrain configuration using
the classification scheme. For example, if a mountainous,
unmodified forest terrain configuration is subjected to an
earthquake, the engine may search for a mountainous, fis-
sured forest terrain configuration; if a mountainous, exca-
vated forest terrain configuration is subjected to an earth-
quake the engine may search for a mountainous, excavated,
fissured forest terrain configuration. In this manner, the num-
ber of terrain configurations to be searched is limited to only
the most relevant terrain configurations.

US 9,364,762 B2

9

In a typical simulated world, most of the map sets may be
either above the ground level, and thus empty terrain configu-
rations representing sky, or below the ground level, and thus
either full terrain configurations representing completely
solid ground or terrain configurations having caves or tunnels
therein. In a simulation where NPCs excavate underground
terrain configurations to obtain resources therein, i.e. mining,
it may be advantageous to classify each underground terrain
configuration according to whether or not an NPC can
traverse the terrain configuration along one or more of its
axes. An NPC traversal path, which for an underground ter-
rain configuration may be considered a tunnel crossing the
entire terrain configuration along one of its x, y, or z axes, is
referred to herein as an “exit.” In one embodiment, the under-
ground terrain configurations may be classified per their
available exits. This creates nine terrain configuration classi-
fications: (1) empty configuration, (2) full configuration, (3)
exits along x-axis, (4) exits along y-axis, (5) exits along
z-axis, (6) exits along x and y axes, (7) exits along x and z
axes, (8) exits along y and z axes, and (9) exits on all axes. The
classifications may be used to encode terrain alterations in a
database. That is, the database stores the terrain configuration
classification that will result from combining each terrain
configuration classification with each of the other classifica-
tions. For example, the engine stores that the combination of
a terrain configuration having x-axis exits (configuration (3)
above) with a terrain configuration having z-axis exits (con-
figuration (5) above) is a terrain configuration having exits on
the x and z axes (configuration (7) above). This may be
expressed in a two-dimensional array, such as “combine[3]
[5]=7. The engine may then use the hard-coded terrain alter-
ations to transform the simulated world. For example, if an
NPC performs a “dig” interaction on the terrain configuration
below the terrain configuration in which the NPC is located,
this indicates to the engine to add a z-axis exit to the lower
terrain configuration. The engine determines the current clas-
sification of the lower terrain configuration and then deter-
mines, from the stored alterations, the resulting terrain con-
figuration classification from combining a z-axis exit
configuration with the current lower terrain configuration
classification. The engine then changes the lower terrain con-
figuration to the most appropriate stored configuration.

NPC Object

The NPC object represents an organic entity that has been
instantiated in the simulation. The NPC object may contain
biographical information, in the form of text strings, such as
the name, age, title, home settlement, and other personal
information of the character the object represents. The NPC
object may include references to other NPCs or to NPC
groups to indicate relationships, such as marriage, parentage,
employment, military or guild affiliation, and other relation-
ships. The NPC object may contain a mapnode reference
indicating on which set the NPC is located, and may further
include a location reference indicating where in the set it is
located. The NPC object may also contain a “home” mapnode
reference indicating where its settlement is located. The NPC
object may further contain objectives or targets that give
operating instructions to the NPC as described below. The
NPC object may be assigned a static or variable priority level
relating to the NPC’s importance to the simulation. In one
embodiment, the priority level of all NPCs is set at instantia-
tion, and the engine may simulate NPCs that are at or above a
particular priority level at each iteration of the simulation.
This approach conserved processing resources by skipping or
delaying the processing of NPCs whose behavior is not
immediately relevant to the simulation. In another embodi-
ment, the engine may simulate at a constant priority level,

10

15

20

25

30

35

40

45

50

55

60

65

10

while the priority levels of the NPCs change depending on
whether they are performing tasks or require satisfaction of
needs, as described below.

The NPC object contains sub-objects pertaining to the
NPC’s physical and behavioral attributes and the NPC’s pos-
sessions. The NPC object includes one or more body part
subobjects and a series of references indicating the physical
relationship of the body parts to each other. The NPC object
may further include one or more need objects and a series of
references indicating the hierarchy or priority of the need
objects. The NPC object may further include an inventory
object containing references to items or weapons the NPC is
carrying.

Body part subobjects represent the NPC’s physical com-
position to a desired degree of abstraction. For example, as
illustrated in FIG. 3, a humanoid NPC has body part subob-
jects for the following: head, neck torso, abdomen, left and
right arms, left and right hands, left and right upper legs, left
and right lower legs, left and right feet, left and right eyes, left
and right ears, heart, stomach, liver, and brain. The choice of
body parts to be represented depends on the desired complex-
ity and the intended physical composition of the NPC. In
another example, a worm-like NPC has just one body part
subobject representing the worm’s body. The spatial arrange-
ment of body part subobjects may be a static parameter tied to
the NPC’s entity type and stored in the overworld object as
described above. When a new NPC is instantiated, the NPC
object may obtain the body part parameters and spatial
arrangement from the overworld object and use this “default”
arrangement as a template. A particular instantiation may
then be modified by applying one or more scalars to the body
part properties. In one embodiment, each body part subobject
contains parameters that describe the represented body part’s
length, width, and height, and further describe the body part’s
position on a grid using X, Y, and Z coordinates. The values of
these parameters may initially be default values contained in
the overworld object lists; the engine may then modify these
values by application of scalars.

Each body part subobject contains one or more tissue sub-
objects and a series of references that represents “layering” of
the tissues. For example, as illustrated in FIG. 4 for the
humanoid NPC of FIG. 3, an upper leg body part subobject
contains five tissue subobjects and a lower leg body part
subobject contains four tissue subobjects. The layered rela-
tionship represents a side view of the body parts. Each tissue
subobject contains a reference identifying the type of tissue.
In FIG. 4, the tissues are layered as follows from top to
bottom: in the upper leg, skin, muscle, bone, muscle, skin; in
the lower leg, skin, bone, muscle, skin; the “front” of the
lower leg lacks a muscle layer because it is the NPC’s shin,
which is effectively skin over bone. Each tissue subobject
may have a weight parameter, which the engine uses to deter-
mine the tissue density by multiplying the weight with the
static material density contained in the overworld object. The
tissue subobject may further include a flag indicating its con-
dition, such as intact, tender, torn, punctured, broken,
repaired, or infected. The tissue subobject may further
include one or more modifiers, such as a strength modifier to
indicate to the engine that the static tissue density should be
multiplied by the modifier. In one embodiment, an overall
physical modifier may indicate the NPC’s level of physical
development; the effect of the modifier may be improved
through performance of physical interactions as described
below. Tissue subobjects may be added to or removed from
the body part subobject. In this manner, clothing or armor
“worn” by the NPC may be represented as tissue layers on the
outside of the body part.

US 9,364,762 B2

11

The NPC object may further maintain, as a sub-object, a
hierarchy of needs that governs the NPC’s behavior. The
hierarchy may be a variable data structure, such as an ordered
list or node tree, comprising references to one or more need
objects described below. The NPC object may also maintain,
as a sub-object, a store of knowledge indicating the degree to
which the NPC is aware of the observable sciences. The
awareness, which increases as described below with respect
to “knowledge progression,” may be stored as an integer or
decimal value for each observable science.

Weapon and Item Objects

The weapon and item objects contain a textual description
of the weapon or item, and a set of characteristics related to
the weapon’s or item’s use. A weapon object may include a
reference to the weapon type, physical characteristics such as
material and weight, effectiveness statistics such as speed and
type of damage, and use requirements such as the required
amount of free inventory space, the strength of the NPC to
wield the weapon, and the number of hands required to use the
weapon. An item object may include references to the item
type and its characteristics. The characteristics of the item
depend on the type of item. For example, a food item may
have a type of food, an amount present, a quality index, and an
array of ingredients.

Organic substances such as living, growing, procreating
plants may be represented by item objects. These items may
include parameters representing how many plants are present
and the health of the plants, which may be affected by NPCs
such as when a tree is chopped down for lumber. The engine
may track and update these values. For example, as time
passes the engine may increment the number of healthy plants
in an item to reflect procreation, and when a threshold number
of'plants is reached the engine may add plant items to adjacent
nodes to represent the spread of the plants.

Building Object

A building object contains a reference to its building type.
The building object may further include a flag indicating
whether it is an active facility. A facility may be used to
perform specific tasks, such as refining materials, creating or
storing items, or providing sleeping quarters for NPCs. Build-
ing types may be stored as static or dynamic architectural
models, having structural parameters that can be affected by
simulated events.

Need Object

A need object describes, essentially, a mental requirement
that the NPC seeks to fulfill by performing tasks. Needs may
be basic needs, such as a need to satisfy hunger, find shelter,
mate, or procreate. Needs may be increasingly complex, such
that tasks to complete have several subtasks and a sequential
order in which they are to be completed. In one embodiment,
a need object includes a plurality of variables that determine
the need’s place in the hierarchy, particularly the timing of
when the need should become the top priority need. These
variables may include, without limitation:

a need type indicating the pertinence to processing the
NPC, such as critical, non-critical, avoidable, toggling,
and localized; the engine reads the need type to deter-
mine how to affect the NPC in light of the needs status—
if a critical need is completely unfulfilled, it may
degrade the NPC’s mental or physical composition until
it is met or the NPC dies, while an avoidable need may be
simply reset to fulfilled without affecting the NPC; a
toggling need may be simply set to met or unmet without
consideration for gradual decay as described below; a
localized need must be performed at a particular loca-
tion, such as at the NPC’s home;

10

20

25

35

40

55

65

12

a tier, which is a high-level, preferably numerical, priority
grouping that begins to interrelate need types as
described below;

fulfillment mechanics, such as: a fulfillment level, which is
a numerical value that increases as the need is being
serviced and decreases when the need is not being ser-
viced; lower and upper numerical thresholds that indi-
cate the fulfillment level value at which the need
becomes unfulfilled and fulfilled, respectively; a limit
indicating the highest numerical value of the fulfillment
level; and a rate of decay, which sets how quickly the
fulfillment level decreases while the need is not being
serviced;

a target, which may be a pointer or plain textual reference,
such as a character string, to an object, such as an NPC
object, item object, map node subobject (i.e. a destina-
tion), or other object; alternatively, the target may be an
array containing pointers to multiple objects needed to
fulfill the need.

Need objects have a hierarchy that is maintained by the
NPC. The NPC may acquire its need hierarchy at instantia-
tion. In one embodiment, each entity type has a default hier-
archy of needs that is maintained by the overworld object. The
NPC acquires the hierarchy as a template of its own hierarchy
of needs, which is a series of need objects within the NPC
object that are referentially related as described above. The
engine may then adjust the hierarchy by adding or removing
needs and associated tasks according to any unique charac-
teristics of the NPC. Adjustments may be made at instantia-
tion, such as when an NPC object includes a genetic code that
predetermines some behaviors, thus affecting instantiation
and prioritization of needs. That is, the instantiation process
may include applying one or more modifiers to the hierarchy
template to affect the tier, order, fulfillment mechanics, tar-
geting, and task or subtask listing of one or more of the needs.
In one example embodiment, an NPC’s genetic code contains
one or more modifiers representing levels of aggressiveness
that affect cognitive, semi-cognitive, or non-cognitive needs.
In one embodiment, a modifier for “communal aggression”
may affect semi-cognitive needs, such as a need to hunt and a
need to find shelter, by imparting a degree of social behavior
upon the semi-cognitive needs. For example, the need hier-
archy is affected by the NPC’s communal aggression type as
follows:

first type: communal, hyper-territorial—the NPC is instan-
tiated with a need to hunt other NPCs in its map node;
this need has the highest priority, even higher than non-
cognitive “survival” needs such as feeding, and the NPC
may even target NPCs of its own entity type to eliminate
or chase away; however, the NPC also has a need to find
shelter with other NPCs of its own entity type, so when
the need to hunt is fulfilled, the NPC will look for NPCs
of its entity type and nest with them; this first type
illustrates how the NPC’s genetic code can make the
NPC and its surrounding population unstable—the NPC
may kill or chase off its cohabitants when the need to
hunt once again becomes the NPC’s priority;

second type: solitary, nomadic—the NPC’s genetic needs
to socialize and to find shelter are removed or severely
attenuated at instantiation, but no aggressiveness is
added, so the NPC may not eliminate surrounding NPCs
as in the first type unless that aggressiveness is otherwise
imbued by the genetic code;

third type: mildly communal, nesting—the NPC is instan-
tiated with a need to interact with NPCs of the same
entity type and a need to create shelter; “mild” commu-
nality means the need to socialize is placed in the same

US 9,364,762 B2

13

tier as the need to create shelter, so that the NPC may live
alone if the need for shelter is satisfied before the need to
socialize, or with other NPCs if the need to socialize is
fulfilled first;
fourth type: communal nesting, solitary hunting—the NPC
is instantiated with a need to hunt other NPCs on a higher
tier than a need to socialize, so that the NPC will first
hunt on its own to fulfill the related need, then seek out
other NPCs with which to nest; the hunting need object’s
tasks may specify the entity types that the NPC prefers to
hunt;
fifth type: communal, nesting—the NPC is instantiated
with a need to socialize, and the NPC’s default need to
find shelter is linked to its need to commune, so that the
NPC prefers to find a home with other NPCs of its entity
type because it fulfills two needs simultaneously; or, the
NPC’s default need to find shelter is modified to include
the task of searching for another NPC of its entity type
before finding a home together; in this instance, because
the NPC has first found other similar NPCs to live with,
the NPC may then hunt in a pack with its cohabitants;

sixth type: communal, nesting and hunting—the NPC is
instantiated with a need to socialize on the same tieras a
need to find shelter, followed by a need to hunt on the
next lowest tier; the need to find shelter is linked to the
need to socialize, so that the NPC prefers to live with
other NPCs of its entity type, creating acommunal living
behavior; or, the NPC is instantiated with a need to find
shelter that includes the task of searching for another
NPC of'its entity type to live with; because the NPC is
living in a group when its need to hunt becomes priori-
tized, the NPC hunts in a pack.

Need objects may be added to or removed from the NPC
object, and corresponding adjustments to the need hierarchy
made, during the simulation as well. New needs may be added
by interactions with other NPCs, with other objects such as
item objects or weapon objects, or with the world itself. For
example, a “teacher” NPC may be capable of teaching a
subset of all of the possible needs. By a “teach” interaction by
the teacher or a “learn” interaction by a “student” NPC, the
engine may add a taught need from the subset to the student
NPC’s hierarchy. A need that was basic may be modified to be
more complex depending on the characteristics of the NPC.
For example, an NPC that has satisfied its need for shelter by
finding a cave, and then learns how to make lumber from
trees, may no longer be satisfied by the cave and may add
tasks to its need for shelter, namely, building a house. “Build-
ing a house” then has a subtask of acquiring lumber, which
may have a subtask of cutting down trees.

For each NPC processed by the engine, one need is “active”
atall times. The active need interjects instructions to the NPC
to control its behavior. The instructions are related to the
highest priority task or subtask to be completed in order to
further the goal of satisfying the active need. When the active
need is fulfilled, it becomes inactive and the next need in the
hierarchy becomes active. The active need may be interrupted
and subsumed by an inactive need if the inactive need has a
higher priority, or if a task or subtask in the active need cannot
be completed or includes a “wait time” of NPC inactivity,
such as when the NPC is boiling water. However, a need, task,
or subtask may include a flag that indicates that the need, task,
or subtask cannot be interrupted once it has begun to be
processed. If atask or subtask of the active need is common to
one or more other needs, those other needs may be passively
fulfilled in whole or in part by completion of the common task
or subtask. For example, a need to hunt and a need to eat may
each include subtasks of searching for an animal to kill and

10

15

20

25

30

35

40

45

50

55

60

65

14

killing the animal. Regardless of which of the two needs is the
active need, the subtasks will be simultaneously completed
and the fulfillment level of both needs will increase.

Interactions

An interaction is an instruction to the engine to change the
properties of the objects involved in the interaction. An inter-
action may be between one or more initiating NPCs and a
target, which may be a map node, an item, weapon, or other
object, a building, or one or more other NPCs. In one embodi-
ment, each interaction may have defined effects on the initi-
ating NPC and the target, and may further have defined effects
on other objects that are not directly involved in the interac-
tion, i.e., the affected object is not the initiating NPC or the
target. In such an embodiment, the interaction has predictable
simulated results. For example, the interaction “eat a fig” will,
upon execution, remove the instantiated fig item and increase
the fulfillment of the initiating NPC’s “hunger” need. The
defined effects of the interaction may be adjusted by one or
more modifiers including, without limitation: values of one or
more parameters in the initiating NPC or target, such as age,
weight, rank, muscle density, material properties, weapon
properties, and the like; one or more scalars that may be
unique to the initiating NPC or target, or may be dependent on
environmental conditions such as weather, temperature, or
time of day; and contour of or obstacles in the immediate
terrain, which may affect physics such as movement speed
and balance. An interaction may have sub-interactions that
must be performed, or may trigger other interactions during
or after execution. For example, when an NPC tries to per-
form the “eat” interaction on another NPC, the initiating NPC
must first kill the target NPC, so the “eat” interaction will first
invoke the “combat” interaction described below and, if the
initiating NPC kills the target NPC, the “eat” interaction
converts the target NPC into a food item and then removes the
instantiation, and increases the fulfillment of the initiating
NPC’s “hunger” need. In addition to changing values within
existing parameters of the initiating NPC, interactions may
add or remove parameters, such as need objects (see the
example “teach” interaction above).

An initiating NPC may have, as an element of its NPC
object, an array or list of interactions the NPC is capable of
performing. Interactions may be added to or removed from
this list as the NPC’s parameter values change. Alternatively,
interactions may be linked to each default type of need object,
so that each NPC that acquires a particular need will be able
to perform the interactions necessary to fulfill that need.
Further, each item type may have associated a list of interac-
tions that may be performed on it.

Once an NPC is instantiated in a particular world location,
and with a particular starting set of needs, the NPC’s behavior
is automatically simulated according to its hierarchy of needs,
the fulfillment status of those needs, and the NPC’s interac-
tions with its surroundings. An NPC develops individually,
and a society of NPCs develops collectively, as a consequence
of'each NPC’s behaviors and actions caused by those behav-
iors over time. Some developmental features are described
below without limitation.

Knowledge Progression

As described above, an NPC’s store of knowledge may
comprise an awareness level for each observable science in
the virtual world. For a particular science, performing an
interaction indicated in the static list for the science will cause
the NPC’s awareness level of that science to increase.
Increased awareness may lead to access to new sciences,
technology, items, interactions, and efficiencies depending on
the awareness being gained. For example, a “cook” interac-
tion may include a subtask of “boil water.” Boiling water may

US 9,364,762 B2

15

increase the NPC’s awareness of thermodynamics. Further, if
the NPC’s awareness of thermodynamics is sufficiently high
to make the NPC aware of vaporization, boiling water may
also increase the NPC’s awareness of vaporization. Once a
certain level of awareness of vaporization is achieved, the
NPC becomes aware of how to construct a boiler. Construct-
ing the boiler then gives the NPC awareness of materials
related thereto, such as metalworking and combustion. NPCs
may also gain awareness in a science by learning it from
another NPC (see the example “teach” interaction above).

The overall awareness of a science within a specific popu-
lation may also be tracked by the engine. The population may
gain access to scientific advances that affect the population as
a whole, such as economic and political sciences. Thus,
knowledge progression may affect societal development as
described below. Further, as some sciences may include
social interactions as a means for gaining awareness, societal
development may in turn affect knowledge progression.

Physical Progression and Combat

As described above, an NPC’s physical composition may
be instantiated according to a template corresponding to the
NPC’s entity type. Thereafter, the NPC’s physical composi-
tion may be individualized by applying one or more modifiers
to affect size, weight, muscle density, and other physical
factors. Through engagement in interactions, an NPC may
improve the effect of one or more of these modifiers. Simply
put, performing physical tasks may increase the NPC’s
strength, agility, balance, damage resistance, and the like.

Methods for applying positive or negative effects of physi-
cal interactions may include one or more of the following, in
any suitable combination and without limitation: increasing
or decreasing the value of an overall modifier, which may
affect an overall “experience” attribute or may evenly
improve or deteriorate the density of all muscle tissues;
increasing or decreasing a modifier for an individual statistic,
such as “agility,” “strength,” or “constitution,” which may be
hard-coded to affect certain tissues or affect all tissues in
different increments; and directly increasing or decreasing a
density modifier or other modifier for specific tissues
involved in the interaction.

Physical combat between one or more NPCs may affect
each NPC involved positively, negatively, or both positively
and negatively. That is, combat may increase physical com-
position and proficiency according to the above methods,
where interactions such as swinging a weapon, biting, run-
ning, and lifting can improve one or more modifiers. Combat
may also degrade tissues, including skin, muscle, and bones,
if the NPC is struck with blunt or piercing damage. Physical
proficiency may also affect the NPC’s performance in com-
bat. In one embodiment, real-world physical equations are
modeled by the engine to determine outcomes of combat.
Thus, strength and agility, which may be related to muscle
density, of an NPC may be used to calculate, for example, the
rate at which the NPC accelerates its weapon. In another
example, muscle density may be used to determine flexural
strength of a body part as it is impacted by a weapon: a high
flexural strength will resist tearing of the tissue, but may allow
some force of the impact to travel to deeper tissue layers and
cause damage; a low flexural strength may tear more quickly,
and upon tearing may allow impacts to pass through it to
deeper tissue levels without attenuating the force. The engine
may represent an attacking NPC’s weapon with a line equa-
tion drawn in a three dimensional space containing the spatial
arrangement of a defending NPC’s body part objects. The
attack path may be represented by a second line equation,
drawn to determine the location on the defending NPC’s

10

15

20

25

30

35

40

45

50

55

60

65

16

spatial arrangement of body parts the attack will strike. The
effect on the tissues within the impacted body parts may then
be calculated.

Societal Development

According to the needs and dispositions of a population of
NPCs, the NPCs may cooperate to complete tasks in satisfac-
tion of their needs. The development of a society of NPCs
may be hard-coded, such as by pre-programming the instan-
tiation of specially configured NPCs in close proximity to
each other. In one embodiment, one or more NPCs in the
population may be configured with a need to educate other
NPCs of its entity types. The educator NPCs may disseminate
other social goals, or such social goals may be assigned to one
or more other NPCs in the population at instantiation. Social
goals may include the construction of special purpose build-
ings, collection of a particular type of resources, organiza-
tional endeavors such as the formation of governments, mili-
tary units, hunting parties, gangs, or church congregations,
and other collective goals. The resulting population will
cooperate to perform individually or mutually beneficial
tasks, and may propagate through instantiation of children
having the same predispositions, provided an external force
does not eliminate the population.

In another embodiment, societies may form naturally, pro-
vided NPCs with at least basic communal needs meet each
other in the virtual world. Through performance of tasks, a
population of two or more NPCs may gradually advance
scientifically, so that eventually an NPC may gain a need to
educate or to perform other social tasks as described above.

While there has been illustrated and described what is at
present considered to be the preferred embodiment of the
present invention, it will be understood by those skilled in the
art that various changes and modifications may be made and
equivalents may be substituted for elements thereof without
departing from the true scope of the invention. Therefore, it is
intended that this invention not be limited to the particular
embodiments disclosed, but that the invention will include all
embodiments falling within the scope of the appended claims.

What is claimed is:

1. A method of simulating a virtual world, the method
comprising:

processing, by a simulation engine running on a simulating

computer and having access to a database storing a plu-
rality of terrain configurations each identified by one of
aplurality of characters, one or more map nodes in a map
of the virtual world, each map node having a map set
comprising an array of various ones of the characters,
the processing including using the array to identify one
or more of the plurality of terrain configurations and
inserting the identified one or more terrain configura-
tions into the virtual world;

wherein processing the map nodes comprises, for each map

node, stacking vertically, in the order in which the char-
acters appear in the array of the map set, the terrain
configuration associated with each character.

2. A method of simulating a virtual world, the method
comprising:

processing, by a simulation engine running on a simulating

computer and having access to a database storing a plu-
rality of terrain configurations each identified by one of
aplurality of characters, one or more map nodes in a map
of the virtual world, each map node having a map set
comprising an array of various ones of the characters,
the processing including using the array to identify one
or more of the plurality of terrain configurations and
inserting the identified one or more terrain configura-
tions into the virtual world;

US 9,364,762 B2

17

wherein processing the map nodes comprises modifying

the map set by:

identifying, from the terrain configurations represented
by the map set, an existing terrain configuration to be
modified;

identifying a desired modification; and

searching the database of the terrain configurations for a
replacement terrain configuration that best matches
the existing terrain configuration as modified by the
desired modification.

3. The method of claim 2 wherein each of the terrain
configurations represented by the map set is classified accord-
ing to a classification scheme, and wherein searching the
database comprises identifying a classification in the classi-
fication scheme that contains the replacement terrain configu-
ration.

4. The method of claim 2 wherein modifying the map set
includes replacing the character of the existing terrain con-
figuration with the character of the replacement configuration
and iterating the map node.

5. The method of claim 1 wherein the map node further
comprises a composition array that describes one or more
materials positioned at sequential heights in the map node, the
heights corresponding to terrain configuration positions in the
map set.

6. The method of claim 2 wherein processing the map
nodes further comprises, for each map node, determining
whether one or more non-player character (NPC) objects are
present and iterating one or more of the NPC objects that are
present.

7. The method of claim 6 wherein each of the one or more
NPC objects comprises a hierarchy of needs referencing one
or more need objects.

8. The method of claim 7 wherein the need objects com-
prise one or more tasks that the NPC object must complete to
achieve fulfillment of the need object.

9. The method of claim 6 wherein each of the one or more
NPC objects comprises a genetic code comprising an array of
genetic attributes.

10. A method of simulating a virtual world, the method
comprising:

processing, by a simulation engine running on a simulating

computer, one or more map nodes in a map of the virtual
world, each map node comprising one or more non-
player character (NPC) objects each comprising a hier-
archy of needs that is a variable data structure containing

10

15

20

25

30

35

40

45

18

one or more references to various ones of a plurality of
need objects, the processing including simulating a
behavior in the virtual world of each of the NPC objects
based on the hierarchy of needs of the NPC object;

wherein the need objects comprise one or more tasks that
the NPC object must complete to achieve fulfillment of
the need object.

11. The method of claim 10 wherein each NPC object
further comprises a genetic code comprising an array of
genetic attributes.

12. The method of claim 10 wherein processing the map
nodes comprises reordering the hierarchy of needs for any
NPC object that has achieved fulfillment of one of the need
objects.

13. The method of claim 10 wherein one or more of the
tasks comprises an interaction having a target, and wherein
completing the tasks comprising an interaction comprises
performing the interaction on the target.

14. The method of claim 13 wherein the NPC object further
comprises a store of knowledge comprising an awareness
value for one or more sciences, and wherein completing any
of the tasks comprises increasing one or more of the aware-
ness values.

15. The method of claim 10 wherein processing the map
nodes comprises adding a need object to the hierarchy of
needs of one or more of the NPC objects.

16. The method of claim 10 wherein each map node has a
map set comprising an array of characters, wherein each
character is associated with a stored terrain configuration.

17. The method of claim 16 wherein processing the map
nodes comprises:

determining if an interaction of any of the NPC objects

with any of the terrain configurations in the map set
requires modifying the terrain configuration;

searching the database of the stored terrain configurations

for a replacement terrain configuration that best matches
the terrain configuration being modified; and

replacing the character of the terrain configuration being

modified with the character of the replacement terrain
configuration.

18. The method of claim 16 wherein the map node further
comprises a composition array that describes one or more
materials positioned at sequential heights in the map node, the
heights corresponding to terrain configuration positions in the
map set.

